
Generalised Multiparty Session Types with Crash-Stop Failures

Adam D. Barwell1 Alceste Scalas2 Nobuko Yoshida1 Fangyi Zhou1

1Imperial College London
2DTU Compute – Technical University of Denmark

INI Concurrency Meeting 2022
11th to 12th August 2022

Introduction

Well-typed processes enjoy the Session Theorems:

X Type Safety
X Protocol Conformance
X Deadlock-Freedom and Liveness

However . . .

7 Most works assume a perfect world
with no failures

7 Failures occur in various ways
7 Failures are di�cult to model

In this work, we present a generalised session type theory with:

» Crash-Stop Failures and Detections �
» Optional Reliability Assumptions R

» Type Level Model Checking Γ |= φ

» Guarantees from the Session Theorems X−→

2/19

Processes

We use a session π-calculus1:

c F x
�� s[p] (variable or channel for session s with role p)

P,Q F 0
�� (νs) P �� P | Q (inaction, restriction, parallel composition)�� c[q] ⊕m〈d〉 .P (where m , crash) (selection towards role q)�� c[q]&{mi (xi) .Pi}i∈I (branching from role q with an index set I , ∅)

where

» v is a basic value (e.g. integers, strings, booleans)

» d is either a channel c or a basic value v
» m is a label, among which crash is a special label

» s is a session

1Some constructs are omitted for clarity of presentation, see full syntax in paper.
3/19

Crash-Stop Failures

Intuition:

An active process may crash arbitrarily, and cease to interact with any other
process afterwards.

New process construct:

P,Q F · · ·�� s[p] (crashed channel endpoint)

4/19

Crash-Stop Failures
An active process may crash arbitrarily, and cease to interact with any other
process afterwards.

In operational semantics of processes:

[R- ⊕] P = s[p] [q] ⊕m〈w〉 .P′ → Πj∈Jsj [pj] where
{
sj [pj]

}
j∈J = fc(P)

[R- &] P = s[p] [q]&{mi (xi) .Pi}i∈I → Πj∈Jsj [pj] where
{
sj [pj]

}
j∈J = fc(P)

where Πi∈IPi is a shorthand notation of parallel compositions P1 | P2 | · · · | Pn, and fc(P) is
the set of free channel endpoints.

For example:

s[p] [q] ⊕Foo〈s′[r]〉 .0→ s[p] | s′[r]

5/19

Interacting with Crashed Endpoints

s[p] [q]&{mi (xi) .Pi}i∈I

s[q]

» Naively, we lose progress when a receiving process is
waiting forever for a crashed endpoint

» We need additional rules for interacting with crashed
endpoints, to complete our failure model

6/19

Crash Detection �

We use a special label crash to denote a crash handling branch, which is taken whenever
a crash is detected:

[R-�] s[p] [q]&{mi (xi) .Pi, crash.P′}i∈I | s[q] → P′ | s[q]

Additionally, we need a rule to handle session endpoints sent to a crashed endpoint — the
payload also becomes crashed:

[R- m] s[p] | s[q] [p] ⊕m〈s′[r]〉 .Q′ → s[p] | s′[r] | Q′

7/19

Session Types

We assign session types to channel endpoints:

B F int
�� bool

�� real
�� unit

�� . . . (basic types)
S F B

�� T (payload type: basic type or session type)
T F p&{mi (Si) .Ti}i∈I

�� p⊕{mi (Si) .Ti}i∈I (external or internal choice, with I , ∅)�� µt.T
�� t

�� end (recursion, type variable, or termination)
U F T

�� stop (session type or crash type)

in judgments such as:
Γ ` P

where
Γ F ∅

�� Γ, x:S �� Γ, s[p] :U
8/19

Typing Contexts Reductions in Multiparty Session Types

Typing contexts evolve as processes reduce.

For example:
Γ1

s[p]:q⊕m(S)
−−−−−−−−−→ Γ′1 Γ2

s[q]:p&m(S′)
−−−−−−−−−−→ Γ′2 S6S′

Γ1, Γ2
s[p] [q]m
−−−−−−−→ Γ′1 , Γ

′
2

[Γ-⊕&]

If s[p] in Γ1 can send (⊕) a message to q, and s[q] in Γ2 can receive (&) that message from p,
with compatible types; then the combined context Γ1, Γ2 reduces with a label s[p] [q]m.

Typical Subject Reduction2:
Given Γ ` P with safe(Γ), and P→ P′.
There exists Γ′ with safe(Γ′) such that Γ′ ` P′ and Γ→∗ Γ′.

2Scalas and Yoshida. POPL ’19. Less Is More: Multiparty Session Types Revisited
9/19

A Brief Example

s[p] : q&{data.r⊕ok | crash.r⊕fail}
s[q] : p⊕data s[r] : p&{ok | fail}

s[p] : r⊕ok s[q] : end
s[r] : p&{ok | fail}

s[q] [p]data

s[p] : end s[q] : end s[r] : end

s[p] [r]ok

10/19

Modelling Crashes and Detections �

T
 end

s[p] :T
s[p]
−−−−→ s[p] :stop

[Γ-]

s[p] :stop
s[p]stop
−−−−−−−→ s[p] :stop

[Γ-stop]

Γ1
s[q]:p&crash
−−−−−−−−−−→ Γ′1 Γ2

s[p]stop
−−−−−−−→ Γ′2

Γ1, Γ2
s[q]�p
−−−−−→ Γ′1 , Γ

′
2

[Γ-�]

11/19

A Brief Example

s[p] : q&{data.r⊕ok | crash.r⊕fail}
s[q] : p⊕data s[r] : p&{ok | fail}

s[p] : q&{data.r⊕ok | crash.r⊕fail}
s[q] : stop s[r] : p&{ok | fail}

s[q]

s[p] : r⊕fail s[q] : stop
s[r] : p&{ok | fail}

s[p]�q

s[p] : end s[q] : stop s[r] : end

s[p] [r]fail

12/19

Safety

safe is the largest predicate on typing contexts Γ such that, whenever safe(Γ):

If s[p] sends to q, and s[q] receives from p, then they shall communicate:

[S-⊕&] Γ
s[p]:q⊕m(S)
−−−−−−−−−→ and Γ

s[q]:p&m′ (S′)
−−−−−−−−−−→ implies Γ

s[p] [q]m
−−−−−−−→

If s[p] has stopped, and s[q] receives from p, then the crash shall be detected:

[S- &] Γ
s[p]stop
−−−−−−−→ and Γ

s[q]:p&m(S)
−−−−−−−−−→ implies Γ

s[q]�p
−−−−−→

Safety holds for any context Γ′ that Γ transitions into:

[S-→] Γ→ Γ′ implies safe(Γ′)

13/19

Optional Reliability Assumptions R

Surely, not everything can fail, right?

For each session s in a typing context Γ:
we can optionally assume a set of roles R to be reliable.

Consequences:
» Crash reductions of s[r] for a reliable role r are disregarded;
» Any role receiving from a reliable role r does not need a crash handling branch.

14/19

Revisiting the Session Theorems

With crash-stop failures and optional reliability assumptions, we need to revise our
subject reduction theorem:

1. safe(Γ) becomes safe(Γ; s,R), where roles R in a session s are assumed reliable;

2. → becomes X−→, where assumption-abiding reductions are considered.

Revised Subject Reduction:

Given Γ ` P with [s ∈ Γ : \Rs : safe(Γ; s,Rs), and P
X−→ P′.

There exists Γ′ with [s ∈ Γ′ : safe(Γ′; s,Rs) such that Γ′ ` P′ and Γ→∗ Γ
′.

Other Session Theorems are revised in a similar way.

15/19

A Problem

becomes

16/19

Type Level Model Checking Γ |= φ

Typing contexts Γ become models

Typing context properties ϕ (·) become modal µ-calculus formulae φ

where ϕ (·) ranges over safety, deadlock-freedom, terminating, never-terminating and
liveness.

We use the model checker, and our prototype is available on GitHub at
https://github.com/alcestes/mpstk-crash-stop.

17/19

https://github.com/alcestes/mpstk-crash-stop

In the Paper

Pre-print available at:

https://arxiv.org/abs/2207.02015

We cover details of:
» type system: typing rules, and typing context transitions;
» how optional reliability is respected in considering process reductions;
» how properties are formulated as modal µ-calculus formulae;
» benchmarks that demonstrate viability of the model checking approach;
» . . .

18/19

https://arxiv.org/abs/2207.02015

Conclusion

We present a generalised session type theory with:
» Crash-Stop Failures and Detections �
» Optional Reliability R

» Type Level Model Checking Γ |= φ

» Guarantees from the Session Theorems X−→

Future work:
» Investigate Di�erent Failure Models
» Integrate with Global Types

See full version of the paper at https://arxiv.org/abs/2207.02015

See our prototype at https://github.com/alcestes/mpstk-crash-stop

19/19

https://arxiv.org/abs/2207.02015
https://github.com/alcestes/mpstk-crash-stop

	Introduction

