Generalised Multiparty Session Types with Crash-Stop Failures

Adam D. Barwell' Alceste Scalas?> Nobuko Yoshida’ Fangyi Zhou'

TImperial College London
2pTU Compute - Technical University of Denmark

INI Concurrency Meeting 2022
11th to 12th August 2022

Imperial College =< DTU —
Vol o UK Research
London DEMMETK e % and Innovation \/érr SS

Introduction

. . However ...
Well-typed processes enjoy the Session Theorems:

X Most works assume a perfect world

v Type Safety with no failures

v Protocol Conformance

X Failures occur in various ways

v Deadlock-Freedom and Liveness X Failures are difficult to model

In this work, we present a generalised session type theory with:

» Crash-Stop Failures 4 and Detections ©
» Optional Reliability Assumptions R
» Type Level Model Checking I |= ¢

. v
» Guarantees from the Session Theorems —

2/19

Processes

We use a session n-calculus’:

C == X | s[p] (variable or channel for session s with role p)

R
o
:I I:

(o) | (vs)P \ P|Q (inaction, restriction, parallel composition)
| clq]®m({d).P (wherem # crash) (selection towards role q)
| clq]&{m;(x;).P;}ig (branching from role q with an index set | # @)
where
» v is a basic value (e.g. integers, strings, booleans)
» dis either a channel c or a basic value v

» mis a label, among which crash is a special label

» Sis asession

Some constructs are omitted for clarity of presentation, see full syntax in paper.
3/19

Crash-Stop Failures 4

Intuition:

An active process may crash arbitrarily, and cease to interact with any other
process afterwards.

New process construct:

P,Q == ---
| S[p]4 (crashed channel endpoint)

4/19

Crash-Stop Failures 4

An active process may crash arbitrarily, and cease to interact with any other
process afterwards.

In operational semantics of processes:

[R-4 ®] P = s[pl[qlem(w).P" — TM;ys;[p;l4 where {Sf[pf]}jel = fc(P)
[R-4&] P = s[pllal&{m;(x;).Pi}ie; — MNjgsilpjls where {sj[Pj]}jEj = fc(P)
where M;,P; is a shorthand notation of parallel compositions P, | P, | --- | Py, and fc(P) is

the set of free channel endpoints.

For example:

s[pl[al®Foo(s’[r]).0 — s[p]¢ | "[r]/

5/19

Interacting with Crashed Endpoints

sipllal&{m;(x;).Pi}ic

C'mon, » Naively, we lose progress when a receiving process is
i BEmaEhing: waiting forever for a crashed endpoint

» We need additional rules for interacting with crashed
endpoints, to complete our failure model

slqly

6/19

Crash Detection ©

We use a special label crash to denote a crash handling branch, which is taken whenever
a crash is detected:

[R-0] s[pl[al&{m;(x;).P;, crash.P’}i; | s[qls — P | s[ql¢

Additionally, we need a rule to handle session endpoints sent to a crashed endpoint — the
payload also becomes crashed:

[R-¢m] slplé | slallplem(s’[r]).Q" — s[pl¢ | s'[r]s | Q

7119

Session Types

We assign session types to channel endpoints:

B := int | bool | real | unit | (basic types)
S == B | T (payload type: basic type or session type)
T = p&{mi(S)).Ti}ig ’ p®{m;i (S5j).Ti};e (externalor internal choice, with | # @)
| put.T | t ’ end (recursion, type variable, or termination)
u =T | stop (session type or crash type)
in judgments such as:
reP
where
r = o|rxsS|rspl:u

8/19

Typing Contexts Reductions in Multiparty Session Types

Typing contexts evolve as processes reduce.

For example:

. S p&m(S’
rl S[p] q@m() rl’ r2 s[q]p m() r2/ Sgs/

fG s[pllq]m A

[Mr-o&]

If s[p] in I; can send (®) a message to q, and s[q] in I can receive (&) that message from p,
with compatible types; then the combined context I3, I; reduces with a label s[p][q]m.

Typical Subject Reduction?:
Given T + P with safe(I"), and P — P’.
There exists " with safe(I"””) such that ™’ + P’ and T —* I"".

2Scalas and Yoshida. POPL '19. Less Is More: Multiparty Session Types Revisited

9/19

A Brief Example

s[p] : q&{data.reok | crash.refail}
s[q] : pddata s[r]: p&{ok| fail}

startpidata

s[p] : rook s[q] : end
s[r] : p&{ok | fail}

ls[p][r]ok

s[p] : end s[q] : end s[r] : end

10/19

Modelling Crashes 4 and Detections ©

:{;&éend (4]
s[p]:T —— s[p]:stop
[r-stop]

s[p]:stop M s[p]:stop

N s[q]:p&crash r1, 5 s[p]stop rz,

LA

[r-ol

11/19

A Brief Example

s[p] : q&{data.r@ok | crash.refail}
s[q] : pddata s[r]: p&{ok| fail}

Istals

s[p] : q&{data.r@ok | crash.refail}
s[q] : stop s[r] : p&{ok | fail}

lS[p]Gq

s[p] : réfail s[q] : stop
s[r] : p&{ok | fail}

ls[p][r] fail
s[p] : end s[q] : stop s[r] : end

12/19

Safety

safe is the largest predicate on typing contexts I' such that, whenever safe(I"):

If s[p] sends to q, and s[q] receives from p, then they shall communicate:

s[p]:qem(S)

p&m’ (S’
[s-o&] ——— and FM

. . s[p][q]m
implies T———

If s[p] has stopped, and s[q] receives from p, then the crash shall be detected:

m(S) slqlop

slplstop implies ———

p&
[s-5&] r and r219®

Safety holds for any context I’ that I' transitions into:

[5-—,1 r— I implies safe(I”)

13/19

Optional Reliability Assumptions R

Surely, not everything can fail, right?

For each session s in a typing context I':
we can optionally assume a set of roles R to be reliable.

Consequences:
» Crash reductions of s[r] for a reliable role r are disregarded;
» Any role receiving from a reliable role r does not need a crash handling branch.

14/19

Revisiting the Session Theorems

With crash-stop failures and optional reliability assumptions, we need to revise our
subject reduction theorem:

1. safe(I") becomes safe(l; s, R), where roles R in a session s are assumed reliable;

v
2. — becomes —, where assumption-abiding reductions are considered.

Revised Subject Reduction:

Given T + Pwith Vs € I : AR; : safe(l";s,Rs), and P A P’
There exists " with Vs € " : safe(I"’; s, Rs) such that ™’ + P’ and T —>é r.

Other Session Theorems are revised in a similar way.

15/19

A Problem

O becomes L NI O\,
P i
AL L, b’

N me

16/19

Type Level Model Checking I |= ¢

Typing contexts T become models

Typing context properties ¢(-) become modal y-calculus formulae ¢

where ¢(-) ranges over safety, deadlock-freedom, terminating, never-terminating and
liveness.

We use the MCRL2 model checker, and our prototype is available on GitHub at

analysing system behaviour

https://github.com/alcestes/mpstk-crash-stop.

17/19

https://github.com/alcestes/mpstk-crash-stop

In the Paper

Pre-print available at:
https://arxiv.org/abs/2207.02015

We cover details of:
» type system: typing rules, and typing context transitions;
» how optional reliability is respected in considering process reductions;
» how properties are formulated as modal u-calculus formulae;

» benchmarks that demonstrate viability of the model checking approach;
» ...

18/19

https://arxiv.org/abs/2207.02015

Conclusion

We present a generalised session type theory with:
» Crash-Stop Failures s and Detections ©
» Optional Reliability R
» Type Level Model Checking I |= ¢

» Guarantees from the Session Theorems -
Future work:
» Investigate Different Failure Models
» Integrate with Global Types
See full version of the paper at https://arxiv.org/abs/2207.02015

See our prototype at https://github.com/alcestes/mpstk-crash-stop

19/19

https://arxiv.org/abs/2207.02015
https://github.com/alcestes/mpstk-crash-stop

	Introduction

